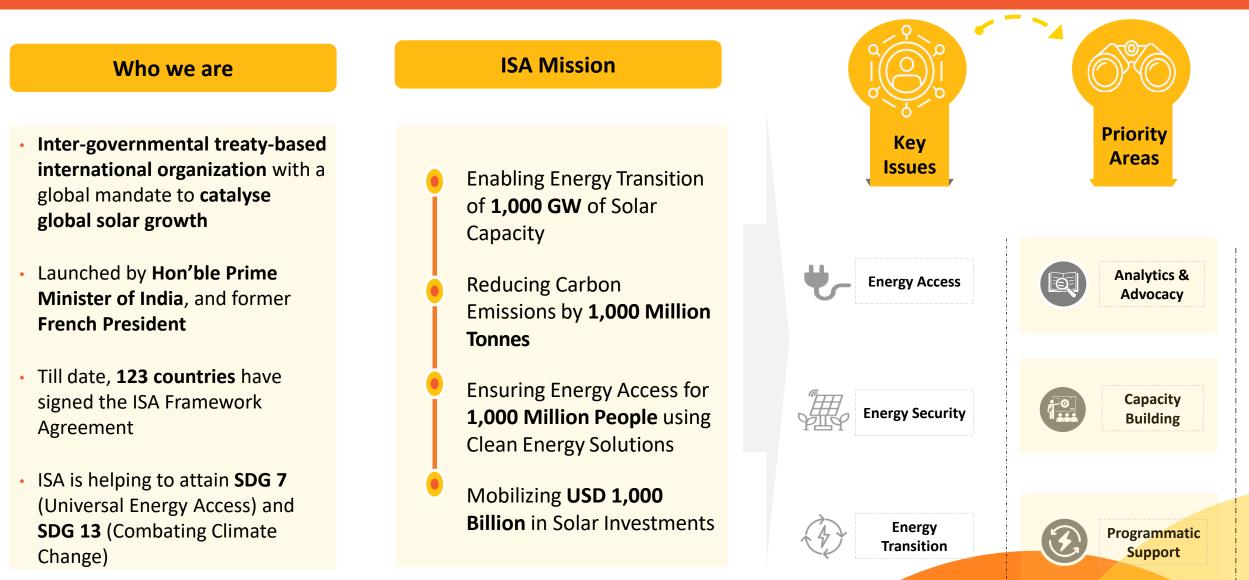


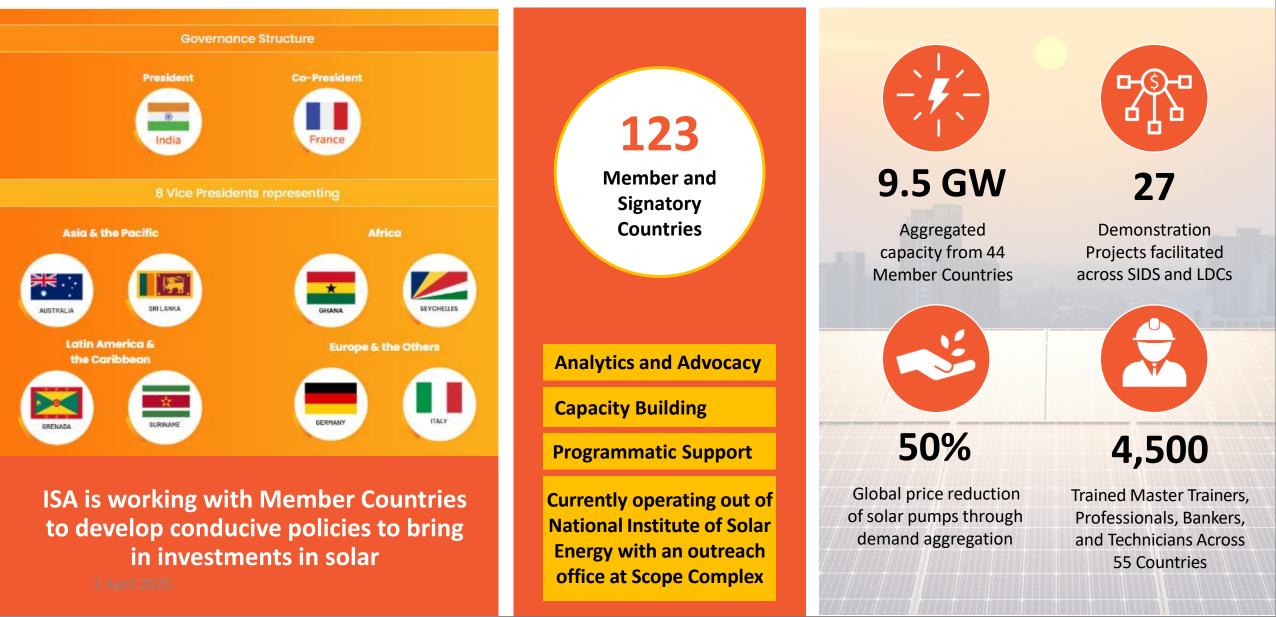
Power Pairing: Co-Locating PV & Energy Storage Solutions

Dr. Gurleen Kaur Technology and Solar Specialist KMID Unit, International Solar Alliance

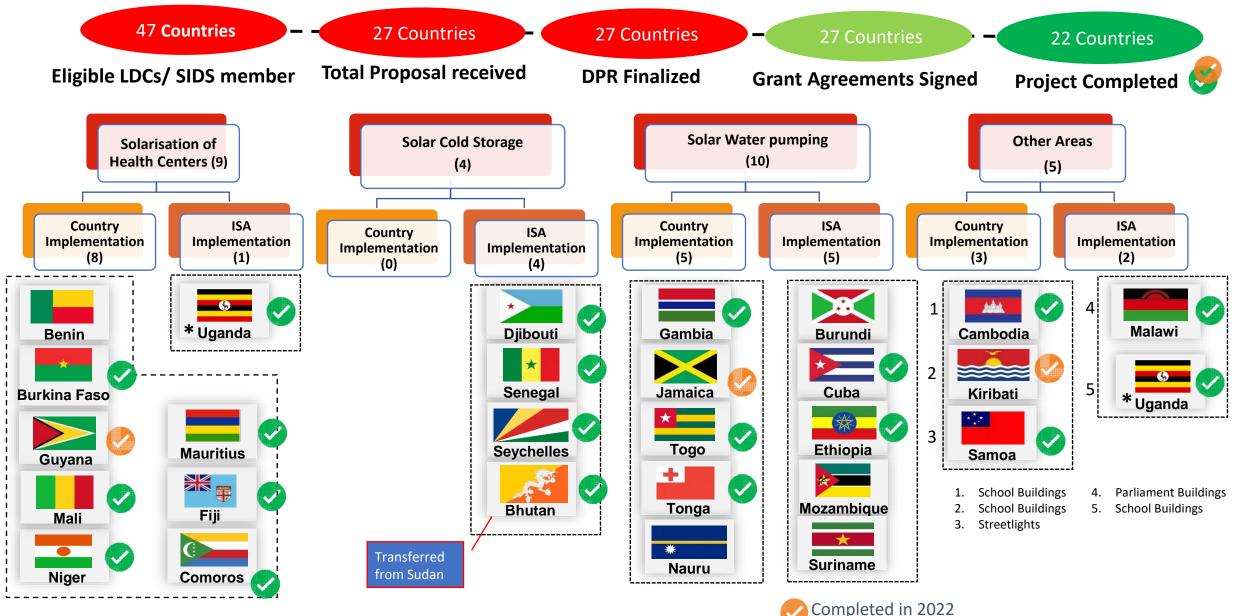
27 March 2025



ISA is on a Mission to Solarize the World


2 April 2025

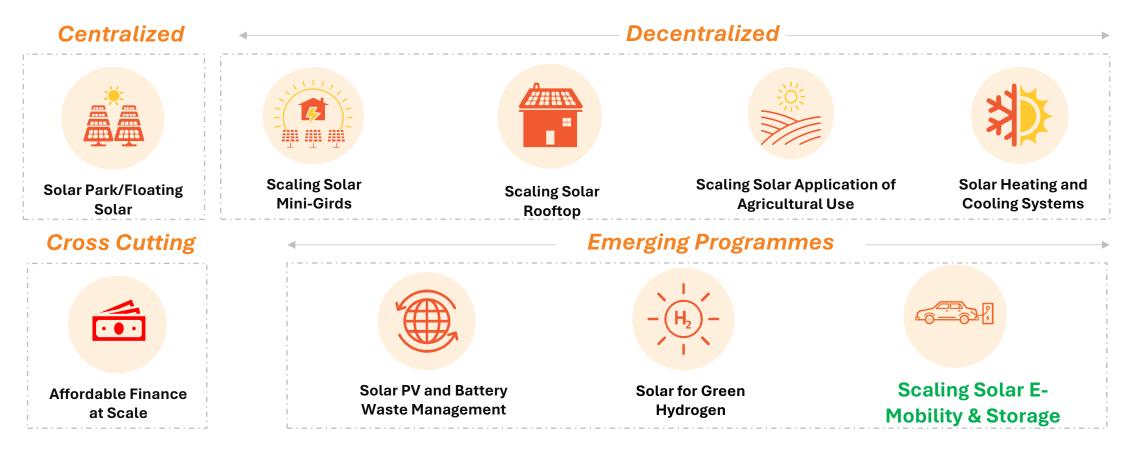
ISA is on a Mission to Solarize the World by 2030



ISA Evolution and Impact

INTERNATIONAL SOLAR ALLIANCE

ISA Demonstration Solar Projects


*Two solar programs (Solarization of 01 Healthcare centre & 03 Primary schools) are being implemented in Uganda

Completed in 2023 & 24

ISA Programmes

To attain SDG 7 (universal energy access) and SDG 13 (combating climate change) goals

Current Programmes (9):

Role of ISA

Support the assessment of readiness levels and facilitate the deployment of Energy Storage systems including Green Hydrogen in ISA member countries-

01	02	03	04	05
Enabling policy and regulatory framework	Identifying technological gaps; 'go-to' resources	Facilitating investment environment for commercially viable storage projects including GH	Identification of viable projects pipeline across storage technologies	Creating global synergies & leveraging partnerships with public and private sector

Partnerships and Outreach

ISA Knowledge Products: Expected Outcomes

Country Insights (Readiness Assessment, Country Prioritization, Country-level deep-dive studies, and project pipelines) Feasibility Studies (Techno-Economic analysis, cost benefit analysis, impact assessment and business models)

Capacity Building (Toolkits, Guidelines, Training Workshops, Webinars)

International Partnerships and Collaborations

International Forums and Organisations						
ESTAR Lenergy Sector Management Assistance Program	E					
CGP27 EXAMPLE Sector	li C					
International Renewable Energy Agency						
Global Renewables Alliance Energy Solutions						
MDBs and Donor Agencies						
THE WORLD BANK ADB						

European

Union

IIN (G)

environment

programme

Events and Outreach

ISA Panel presentation at the Energy Storage Partnership ESMAP meeting in South Africa, 27 November 2023		CoP 27 & CoP28 Sessions on Storage (Co-hosts: ADB, CEM, NREL, IESA), 2 December 2023		
ISA Panel presentation on ' Long Duration Energy Storage ' at the India Smart Utility Week (ISUW), New Delhi, 15 March 2024		ISA-IESA joint learning sessions under "Future Energy Learning Centre" at the India Energy Storage Week, IICC, New Delhi, 1-2 July 2024		
CoP29 Session on Bridging the Energy Gap: Accelerating Solar Adoption with Storage, Co- hosts: ADB, CEM 11 November 2024		6th Meeting of ISA's Regional Committee Meeting (LAC) ; Side event on ' Enabling large scale deployment of energy storage systems: ISA Perspective ' (Santo Domingo, Dominican Republic, 10-11 September 2024)		

TERI-ISA session on Framework for Energy Storage Prioritization to Boost Solar Deployment in ISA member countries at World Sustainable Development Summit (New Delhi, 5 March 2025)

ISA: Ongoing & Planned Work: 2024-2026

Project-1: Energy Storage System (Short & Medium Duration) Project-2: Energy Storage System (Long Duration)

Phase-1 (2024-25) : Developing Prioritisation Framework for Short and Medium duration storage system for Accelerating Solar Project Deployment in LDCs and SIDS

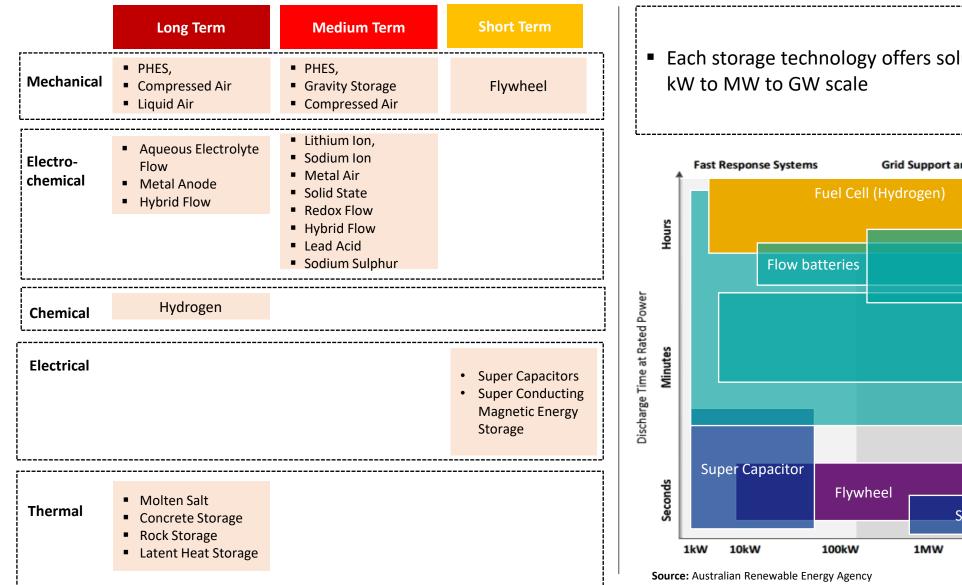
Phase-2 (2025): Country-level Deep Dive Report on Feasibility Studies and Impact Assessment; Pilot Pipeline Identification

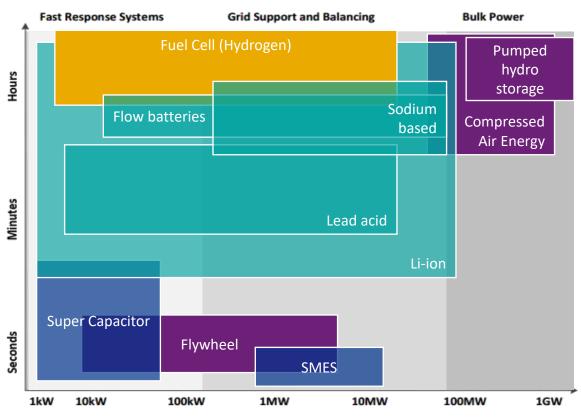
Phase-3 (2026-): Pilots Implementation

Phase-1 (2024-25): Scaling Solar integrated LDES: Prioritisation and Developing Implementation Roadmap; Identification of project pipelines in Developing Nations

Phase-2 (2025): Country-level Deep Dive Report on Feasibility Studies and Impact Assessment; Pilot Pipeline Identification

Phase-3 (2026-): Pilots Implementation


Updates


Launch of "<u>Framework for Energy Storage Prioritization to boost Solar Deployment in LDCs and SIDS:</u> <u>a consultation draft</u>" at COP 29

LDCs: Least Developed Countries; SIDS: Small Island Developing States

Why New Technologies

Each storage technology offers solutions for applications from

Comparative analysis of Storage technology basis technical and commercial parameters

Objective

- To identify relevant technical and commercial characteristics of storage technologies
- To map the characteristic of each technology
- To compare technologies based on their performance on technical/ commercial parameters

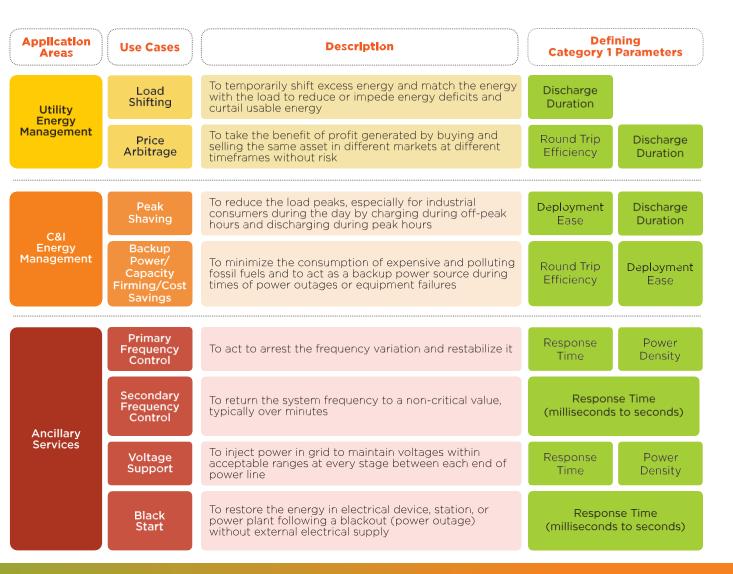
Technology comparison on technical parameters

•

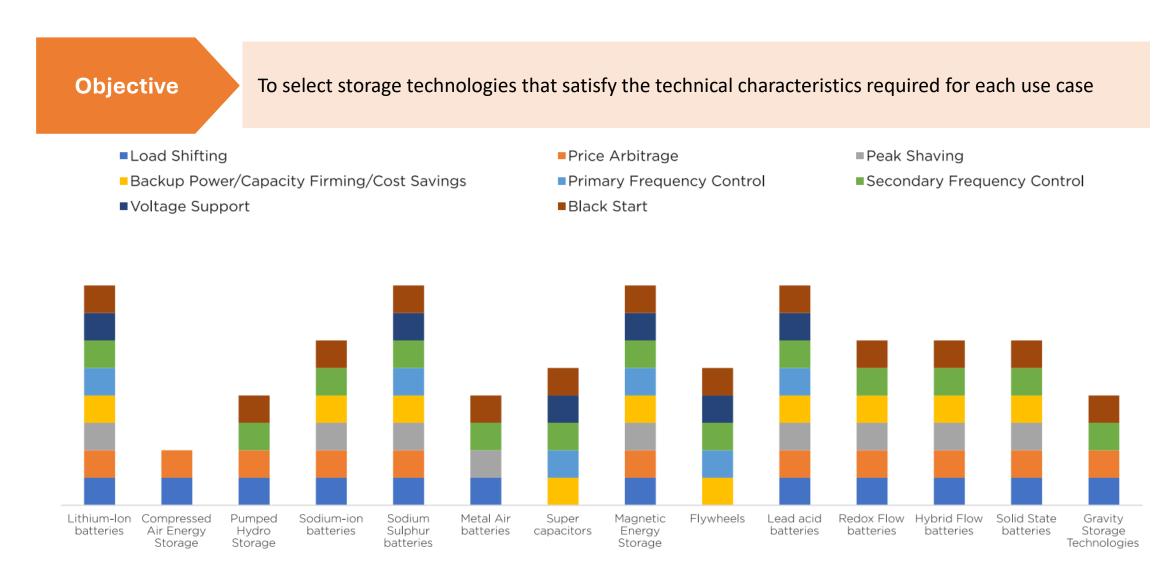
Technology	Power density	Discharge duration	RtE	Response time	Deployment Ease
Lead acid batteries	Medium	Medium	High	High	High
Lithium- ion batteries	High	Medium	High	High	High
Sodium- ion batteries	Low	Medium	High	High	High
XX	XX	XX	ХХ	ХХ	XX
ХХ	ХХ	ХХ	ХХ	XX	ХХ

Technology comparison on commercial parameters

Technology	Global vendor ecosystem	Raw material constraints	TRL	Scale of operations	Total score
Lead acid batteries	3	3	3	3	18
Lithium-ion batteries	3	1	3	3	17
Sodium-ion batteries	2	3	2	2	14
ХХ	ХХ	XX	ХХ	XX	XX
ХХ	XX	ХХ	XX	XX	XX


Non-Exhaustive

Non-Exhaustive


Analysis of typical storage characteristics required for different use cases

Objective

- List the application areas for energy storage
- Identify the key storage characteristics required for each use case

Mapping: Technologies for different use cases

Co-location

It is the practice of *placing two or more related infrastructure components in close physical proximity* to optimize efficiency, reduce costs, and enhance performance.

Co-location in Solar Sector – Generation meets Storage

In **solar energy**, co-location means **installing solar PV systems alongside energy storage systems (ESS)** at the same location. This allows excess solar energy to be stored and used during periods of high demand or low sunlight, enhancing grid reliability.

"Power Pairing"

Solar and energy storage were described by Elon Musk as going together *"like peanut butter and jelly"*.

"Power Pairing"

Generation

ATA

Storage

Created by Chat SP

Upsides of 'Power Pairing' - PV and Energy Storage

Grid Stability and Demand Management	 Reduces grid fluctuations caused by intermittent solar generation. Enhances power quality and reliability by providing stored energy during peak demand hours. Frequency and voltage regulation are improved, reducing the risk of blackout 				
Transmission Cost Optimization	 Better utilization of transmission infrastructure — electricity generated during the day can be stored and dispatched during peak evening hours, reducing grid congestion. Reduces the requirement for new transmission lines, optimizing grid investments 				
Energy Arbitrage and Market Benefits	 Energy shifting: Store excess solar power when generation is high and demand is low, then sell it when prices are higher. Enables participation in ancillary services (frequency regulation, spinning reserves) for additional revenue streams 				
Accelerating Renewable Energy Integration	• Facilitates hybrid RE projects (e.g., solar-wind-storage) for more stable power supply				

Downsides of 'Power Pairing' - PV and Energy Storage

High Initial investment

- Battery storage remains expensive, although costs are decreasing.
- Requires substantial capital investment for both PV and ESS infrastructure

Land and infrastructure challenges

• Land constraints make it difficult to develop large-scale co-located projects.

Battery Degradation and Replacement Costs

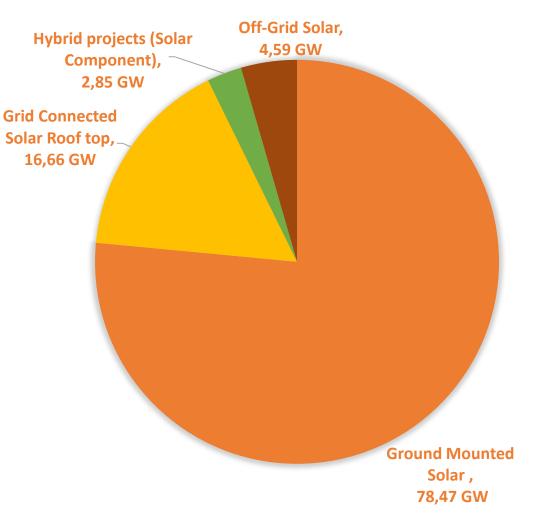
• Lithium-ion batteries (currently dominant in storage sector) degrade over time, requiring periodic replacement

Policy and Regulatory Uncertainty

• Despite government mandates, lack of clear incentives and financing mechanisms slows adoption.

The India Story with 'Power Pairing'

Cumulative Solar Capacity (GW)


Ministry of New and Renewable Energy

India Achieves Historic Milestone of 100 GW Solar Power Capacity

With 100 GW solar power achieved, India is moving towards energy independence and a greener future: Union Minister Pralhad Joshi

India's solar power sector has witnessed an extraordinary **3450 % increase** in capacity over the past decade, rising from **2.82 GW in 2014 to 100 GW in 2025**.

India is on a fast track to achieving **500 GW of non-fossil fuel** capacity by 2030. However, <u>the intermittency of solar power</u> <u>presents a major challenge.</u>

As of 28 Feb, 2025 as reported by Ministry of New and Renewable Energy Ministry, India

The India Story- Projections for ESS

- Current installed energy storage capacity (Dec'2024): 4.86 GW (PSP: 4.75 GW and ESS: 0.11 GE)
- As per National Electricity Plan (NEP) 2023 of Central Electricity Authority (CEA), projected energy storage capacity is
 - **2026-27 : 82.37 GWh** (PSP: 47.65 GWh and BESS: 34.72 GWh)
 - **2031-32 : 411.4 GWh** (PSP: 175.18 GWh and BESS: 236.22 GWh)
 - 2047 : 2380 GWh (PSP: 540 GWh and BESS: 1840 GWh) in light of net zero targets

A long-term trajectory for Energy Storage Obligations (ESO) has also been notified by the Ministry of Power to ensure that sufficient storage capacity is available with obligated entities. As per the trajectory, the ESO shall gradually increase from 1% in FY 2023-24 to 4% by FY 2029-30, with an annual increase of 0.5%. This <u>obligation shall be treated as fulfilled</u> only when at least 85% of the total energy stored is procured from Renewable Energy sources on an annual basis.

- Advisory by Government of India

Feb'2025

India's Central Electricity Authority recommends energy storage requirement for solar PV tenders

By Jonathan Touriño Jacobo February 26, 2025 Ministry Of Power Advisory On Co-Locating Energy Storage Systems With Solar Power Projects To Enhance Grid Stability And Cost Efficiency

By Mohan Gupta - 19th February 2025

● 263 및 0

India mandates co-locating energy storage with solar projects

India's Ministry of Power has mandated all renewable energy implementing agencies and state utilities must incorporate a minimum of two-hour co-located energy storage systems (ESS), equivalent to 10% of the installed solar project capacity, in future solar tenders.

FEBRUARY 20, 2025 UMA GUPTA

India Mandates Energy Storage for Solar Projects to Boost Grid Stability

Renewable energy plus storage auctions to gain traction in India

India Ratings says it expects renewable energy and storage tenders to gain further traction in India in the coming years, given the storage requirement of around 74 GW/411 GWh under National Electricity Plan (2023-32).

JANUARY 22, 2025 UMA GUPTA

The India Story- Government's mandate

18th February, 2025

Government of India Ministry of Power Central Electricity Authority Sewa Bhawan, R.K. Puram, New Delhi E-Mail: <u>secretary.cea@nic.in</u>, Ph.: 011-26732203

To,

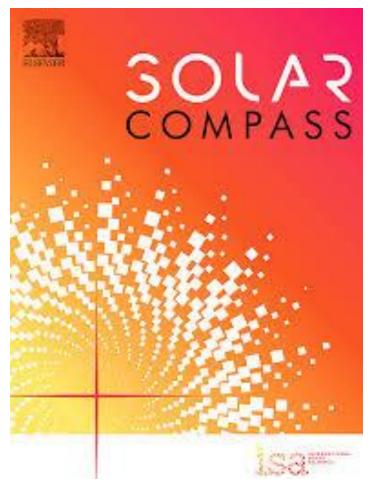
- Principal Secretaries/Secretary (Power/Energy) of all State Governments/ UTs
 CMDs, Central Generating Stations
- II. CMDs, Central Generating Stations III. Head. REIAs

Subject: Advisory on co-locating Energy Storage Systems with Solar Power Projects to enhance grid stability and cost efficiency reg.

- The government has mandated co-location of PV with storage, requiring a minimum of two hours of storage for new projects (i.e. 10% of installed capacity)
- Distribution licenses may mandate 2-hour storage with rooftop solar plants as well.
- Storage systems can be used in Single-cycle operation (charged using co-located solar power and discharged using evening hours) or Double-cycle operations (charged from solar power or grid during low demand hours and discharged during peak hours – especially non solar hours)

Global Green Hydrogen Startup Challenge

OBJECTIVE To identify and support startups that offer innovative and scalable solutions in the green hydrogen sector	TARGET SECTORS Steel and Transport	IMPACT Serve as a global platform to support innovative green hydrogen startups		UNIQUE FEAT	URES OF GHIC
at concept pha	d facilitating support to select use (Seed Funding and capacity ution phase (advisory / network)	/ building) or ing support)	E S	INTRY INSIGHTS (Country-level announcements, nissions and targets)	GREEN HYDROGEN COMMUNITY (Live interactive platform for the community)
Global Green hydroge Shortlisting green hydrogen startups in ste Global launch & outreach prog for promoting and launching the chai December'24 on	en startup challenge el & transport sector by April'25 gram lenge	25 onwards		DEVELOPMENT (Certified e-learning courses, podcasts, try expert interview)	LIVE CHATBOT (Al and ML supported robotic bot for quick support & address queries)
Shortlisting & outreaching interested donors for providing the required financial support November'24 onwards	(\$)			(Pl	BAL STARTUP PROGRAM atform to support startups and ities to connect with financiers)


INTERNATIONAL

SOLAR

Special Issue – Integrated PV Applications

Guest Editor – Dr. Gurleen Kaur, Co-Guest Editor - Dr. Lawrence Kazmerski

STATUS : Call for Papers released Landing Page Ready - Link

Areas of Interest:

- Agrovoltaics (Agri-PV)
- Floating PV (Floating PV)
- Vehicle Integrated PV (VIPV)
- Building Integrated PV (BIPV)
- Heating and Cooling Applications

IMPORTANT DATES Submission Deadline: Mar' 25

DR. GURLEEN KAUR TECHNOLOGY AND SOLAR SPECIALIST, INTERNATIONAL SOLAR ALLIANCE (ISA)

Contact details Email: <u>gkaur@isa.int</u> LinkedIn: gurleen-kaur-nus Acknowledgements Dr. Mridula Bhardwaj – Program Scaling Solar E-Mobility & Storage, ISA PPIC Team, ISA KMID Team, ISA

Thank you for your attention