# **LCoH Calculation Method**

#### Heat Cost Calculations Applied to Solar Thermal Systems

#### **Yoann Louvet**



#### ITE

University of Kassel yoann.louvet@uni-kassel.de





Price reduction of solar thermal systems



### Introduction

Price reduction assessment in Task 54 requires:

- Reference systems
- Common indicator and methodology
- Levelized Cost of Heat (LCoH):
  - Often used in power sector (LCoE)
  - Growing usage in the heat sector
  - Assess the impact on heat costs of
    - costs reduction along the value chain (production to decommissioning)
    - system performance improvements



# **LCoH Equation**





### **System Boundaries and LCoH**







## Example: Reference SDHW System in Germany (SFH)

■ 5 m<sup>2</sup> FPC (gross), 300 I store, back-up: gas condensing boiler

Saved final energy: 2.2 MWh/a

- Final energy demand: 13.4 MWh/a
  - T = 20 years

|                                 | Conventional |      | Solar |      |  |
|---------------------------------|--------------|------|-------|------|--|
| Investment I <sub>0</sub> [€]   |              | 6500 |       | 3850 |  |
| O&M <i>C</i> <sub>t</sub> [€/a] |              | 1280 |       | 117  |  |

$$LCoH = \frac{I_0 + \sum_{t=1}^T C_t}{\sum_{t=1}^T E_t}$$

| LCoHs | 13.9 €ct/kWh |
|-------|--------------|
| LCoHc | 11.9 €ct/kWh |
| LCoHo | 12.2 €ct/kWh |





# Summary

- LCoH is a sensitive indicator: detailed assumptions necessary!
- Depends for solar thermal systems on
  - System design
  - Customer behaviour
  - Climatic situation
  - Service life time and maintenance
- 10 reference systems (5 countries) defined in Task 54

Yoann Louvet

University of Kassel - Institute of Thermal Engineering

www.solar.uni-kassel.de

yoann.louvet@uni-kassel.de



6

Thank you for your attention!

