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Overview

This chapter discusses the uncertainties associated with 

measured or modeled solar resource data along with data 

quality assessment. These are important because:

❖they provide a basis to assess confidence in the predicted output of a 

planned PV system and is thus a key factor when determining the 

bankability of the project. 
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Solar Resource Measurement Uncertainty

Estimation of Calibration and Field Measurement Uncertainty 

o Calibration

o Spectral response

o Directional response

o Data logger uncertainty

o Temperature dependence

o Non-linearity
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Calibration and Field Measurement Uncertainty

Calibration traceability and accumulation of measurement uncertainty for pyrheliometers and pyranometers
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Solar Resource Measurement Uncertainty

Type B Uncertainty 

Source

Thermopile 

Pyranometer (%)

Photodiode 

Pyranometer (%)

Thermopile 

Pyrheliometer (%)

Photodiode 

Pyrheliometer (%)

Calibrationa 3 5 2 3

Zenith responseb 2 2 0.5 1

Azimuth response 1 1 0 0

Spectral response 1 5 1.5 8

Tiltc 0.2 0.2 0 0

Nonlinearity 0.5 1 0.5 1

Temperature response 1 1 1 1

Aging per year 0.2 0.5 0.1 0.5

U95 4.1 8.0 2.7 8.9

Example of Estimated Expanded Uncertainties of Responsivities of Field Pyranometers and Pyrheliometers. 

Modified from Reda (2011)

Some uncertainties have higher impact on the overall uncertainty
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Quantification of Model Uncertainty
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Quantification of Model Uncertainty

• An important distinction between measurements and model estimates is that 

the latter actually include two separate sources of uncertainty, which in principle 

would need to be decoupled. 

oThe intrinsic model’s uncertainty [caused by inadequacies in the model’s functions, 

which do not perfectly describe the physical radiation transport processes in the 

atmosphere]; and 

o The error propagation uncertainty [caused by unavoidable imperfections in the 

model’s inputs, which make their way to the model’s outputs]. 

How do we quantify the uncertainty of these errors?
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Quantification of Irradiance Model Uncertainty

• The error propagation effects can be evaluated by analyzing the model’s 

sensitivity to variations in its inputs (of supposedly known uncertainty), however 

this approach is not easy and in practice, the quality of modeled irradiance is 

evaluated against ground measurements.

o Ground measurement uncertainty needs to be included in the estimation of overall 

uncertainty.

Approaches to quantify overall model uncertainty 
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Example of Irradiance Model Uncertainty

• In the absence of a specific standard for the 

evaluation of model uncertainty, the National 

Renewable Energy Laboratory (NREL) 

developed a way to include these sources and 

derive the uncertainty estimate for a 95% 

confidence interval representing two standard 

deviations (coverage factor of ≈2):

𝑈95 = 𝑘 ∗
𝑈𝑚𝑒𝑎𝑠

𝑘

2
+

𝑏𝑖𝑎𝑠

𝑘

2
+

RMSE

𝑘

2

• Issue: this is a conservative approach, the 

resulting U95 may be pessimistic because RMSE 

includes the bias error, which is thus counted twice. 

Therefore, authors of this handbook are 

investigating to find statistical metrics that assist in 

quantifying the overall uncertainty.
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Example of Irradiance Model Uncertainty

• Solargis implemented a slightly different approach to determine uncertainty in 

their satellite-derived data sets by incorporating the model uncertainty, the 

uncertainty of the ground-based irradiance measurements, and the 

interannual irradiance variability: 

𝑢combined = ± 𝑈𝑚𝑒𝑎𝑠
2 + 𝑈𝑚𝑜𝑑𝑒𝑙

2 + 𝑼𝒊𝒏𝒕𝒆𝒓𝒂𝒏𝒏𝒖𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚
2
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Automated Data Quality Evaluation Methods
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Depending on the available data, SERI-QC performs one-element, two-element, or three-

element tests, each with a progressively narrow filter for acceptability:

SERI-QC flags encode the magnitude of discrepancy to facilitate error analysis.

SERI-QC publication: https://www.nrel.gov/docs/legosti/old/5608.pdf

Automated Data Quality Evaluation Methods

Data Quality Assessment Using NREL’s SERI-QC
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Range Air Mass Zenith Angle

Low 1.00–1.25 0.00–36.96

Medium 1.25–2.50 36.96–66.57

High 2.50–5.76 66.57–80.00

Maximum Kt and Kn

https://www.nrel.gov/docs/legosti/old/5608.pdf
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Methods of Automated Data Quality Evaluation

Data Quality Assessment Using NREL’s SERI-QC

Daily Quality Checks
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SERI-QC cylinder plots:

•A full month of data and quality flags can be 

seen at a glance

•Shows data for each of the three solar 

components

•Errors become instantly evident

•Flags can be correlated with irradiance values

•The three components can be viewed in 

context with each other.
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