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Introduction ‘G
(ug

* Why day-ahead forecasting?
» Most electricity traded in day-ahead market

» Schedule dispatch of power generation

 Spot market trading:

Submit bid  1rading block

l l I - Lead time: 12 hours
- Horizon: 24 hours

Day 0 Day 1

PVPS



Solar Forecasting Techniques
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Solar Forecasting Techniques

- Numerical Weather Prediction
. Statistical learning
. Satellite Imaging

. All Sky Imaging
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|
Contribution (gm
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« Comparison of models that utilize NWP to forecast the PV power output

« Examining the value of aggregating PV systems for forecasting
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PV-systems in Utrecht

UPP-network
« 200 PV-systems
 Utrecht (NL)
* 38 x 54 kmz?
« 2013 - 2017

Legend

e PV-system i
¢ Weather station
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Methods: Input Variables :('i‘I‘

Mean sea level pressure

Surface temperature at 2m
Dewpoint temperature at 2m
Zonal wind vector at 10m
Meridional wind vector at 10m
Surface solar radiation downwards
Cloud cover at low, mid and high
altitude

» Total precipitation

ECMWF weather
prediction

Additional
exogeneous
data

Clear sky irradiance
Solar zenith angle
Month

Hour
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Methods: Process Variables :(;‘I‘

ECMWF weather
prediction archive
4/ Variables/
Additional
exogeneous
data

Standardize:

Xit — Mg
0j

Vit =
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Methods: Forecasting Models :('i‘I‘

CMWF weather
prediction archive
4/ Variables /L{ Models

Additional 0) Smart Persistence (SP)
1) Multi-variate Linear Regression (MLR)
exoﬂe”eous 2) LASSO Regression (LASSO)
ata 3) Linear Support Vector Machine (L-SVM)

4) Kernel Support Vector Machine (K-SVM)
5) Random Forests regression (RF)

6) Gradient Boosting regression (GB)

7) Feed-forward Neural Network (FNN)

PVPS
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Methods: Train Models :('i‘I‘

PV production

measurements
Training period
CMWF weather 02/2014 - 02/2016 \

prediction archive
Variables Models

PV measurements

of 152 PV-systems

. for period 02/2014
Additional - 02/2017
exogeneous
data
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Methods: Train Models :('i‘I‘

PV production

measurements
Training period
ECMWF weather 02/2014 - 02/2016 \

prediction archive
Variables Models Pre-
processing PV measurements

for period 02/2014
- 02/2017

of 152 PV-systems
Additional
exogeneous
data

Normalize:
y — ym,t
Pt Ym
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Methods: Forecast & Evaluation :('i‘I‘

Remove outliers

Validation period
CMWF weather 02/2016 - 02/2017
prediction archive
- Post-
Variables Models : Output
processing
Additional /
exogeneous Evaluate the performance of the forecast models with:
data 1) Mean Absolute Error (MAE): MAE = %Z{}:l |Vt = Ymtl

2) Root Mean Square Error: RMSE = \/%Z?ﬂ(yp,t —ym,t)2
3) Skill Score: Skill Score = 1 — %Zf";

PVPS

12



Results: Time-series Forecast

e Example of forecast
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All statistical models perform better

than SP

The more sophisticated statistical
models outperform the linear models

Best performance RF and GB

K-SVM RF GB FNN
MAE 8.04% 7.48% 7.63% 7.71%
Skill Score 40.1% 41.2% 41 .4% 41.1%
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Results: Forecasting multiple PV-systems (1) :('i‘.‘

» The performance of all models

improve as the number of sites

: 0.16 7 . P
INcrease.: ] BN MLR
0.14 1 w GB

= Statistical models (20-25%) _
* SP (10%) 0.12 - *

* The rate of improvement
decrease as the number of _
sites increase 0.08

T = *

MAE

0.10 =

« Deviation of forecast errors 0.06 - = = -

decrease as the number of =

sites increase 1 10 25 | 50 150
Number of Sites
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Forecasting multiple PV-systems

PVPS

» All statistical models perform better than SP

* The more sophisticated models outperform
the linear models

* RF best performance in terms of MAE

» K-SVM performs best in terms of the Skill
Score

‘%

Models MAE (%) Skill Score (%)
SP 11.0 -

MLR 7.06 42.5
LASSO 7.06 42.0
L-SVM 7.20 42.5
K-SVM 6.29 46.5

RF 6.09 45.8
GB 6.19 45.9
FNN 6.30 46.1

MAE and Skill Score for 150 PV-systems

16



1
Conclusions e
Caa

« Comparison of statistical PV power forecasting models

* Single PV-system
= Sophisticated models outperform the linear models
*RF and GB outperform the other models

» Aggregated PV-systems

» Benefits all forecasting models
» Reduces the difference in errors among the statistical models
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