WEARABLE LIGHT SENSORS IN CASE STUDY EVALUATIONS

Prof. Werner Osterhaus and Myrta Gkaintatzi-Masouti

Lighting Design Research Laboratory
Aarhus University, Denmark

Niko Gentile

Energy and Building Design Division Lund University, Sweden

Presentation Outline

Short overview on "Case Studies"

Why do we need wearable devices?

Which sensors are out there?

Commercial sensors

- Actiwatch
- LYS Button
- Movisens

Problems

Recommendations

Case Studies

What you should expect to see

Image source: IEA SHC Task 61

Case Studies

A coherent framework for the evaluation

Icons: Niko Gentile

Pictures: Julio Fernandes Amodia, Rawan Abdulhaq, Ceren Ylmaz, Kieu Pham, Veronica Garcia-Hansen, Claudia David Amorim, Rafael Campama Pizarro

Case Studies

Existing buildings with a "(day)lighting touch"

Freepik.com design, adapted by N. Gentile Distributed under CC-BY 3.0

Image source: Elaboration by Niko Gentile on original design by freepik.com (CC-BY 3.0).

Why do we need wearable devices?

We want to investigate light and human experience

Image source: David Hubel (1988). Eye, Brain and Vision, W.H. Freeman & Co., New York, p. 35.

Why do we need wearable devices?

During the day, a person is exposed to different lighting conditions

We need:

- dynamic measurement methods
 (static measurements do not tell us the full story)
- ways to measure personal light exposure

Why do we need wearable devices?

Light spectrum has influence on visual and non-visual effects of light on humans

So, we want devices that can measure:

- Full spectrum (ideally)
- Photopic illuminance (at least)
- Different wavelengths (compromise)

And we want to correlate photometric measurements with human factors (e.g. activity levels)

Which sensors are out there?

Commercial devices

- Philips Actiwatch
- LYS Button
- Movisens

Others ...

"Research" devices

- Daysimeter
- LuxBlick
- Others ...

Image sources:

https://www.philips.com.au/healthcare/product/HCNOCTN445/actiwatch-spectrum-plus-get-the-actiwatch-advantage/specifications#cb_contact

https://lystechnologies.co.uk/products/lys-1-0-wearable

https://www.movisens.com/en/products/light-and-activity-sensor/

https://www.lrc.rpi.edu/programs/lightHealth/img/oldDaysimeter.jpg

 $https://www.tu-ilmenau.de/fileadmin/public/lichttechnik/Publikationen/2011/Vandahl_Tagungsband_CIE_2011.pdf$

Worn on the wrist

Light sensor

Tracks:

- Activity
- Sleep/wake patterns
- Photopic illuminance
- RGB

 $Image\ source: https://www.philips.com.au/healthcare/product/HCNOCTN445/actiwatch-spectrum-plus-get-the-actiwatch-advantage/specifications\#cb_contact$

Illuminance measurements

Measured under an overcast sky outdoors

- Need for calibration factor
- According to Markvart et al. (2015), who tested 48 Actiwatches, calibration should be device specific

Measured under a combination of red and green light

- Practically not usable for measuring red/green light
- Not very useful for "circadian" lighting installations

References:

J. Markvart, Å. M. Hansen, and J. Christoffersen, "Comparison and correction of the light sensor output from 48 wearable light exposure devices by using a side-by-side field calibration method," *LEUKOS*, vol. 11, pp. 155–171, 2015, DOI: http://dx.doi. org/10.1080/15502724.2015.1020948.

Graphs from:

A. Bødker Poulsen, "Circadian lighting in psychiatric hospital wards: A method test", Master's Thesis, Aarhus University, 2015

Activity and sleep analysis

Caution:

Actiwatch data alone are often misleading and not sufficient due to wearing the instrument at the wrist

Image Source: http://ak1.ostkcdn.com/images/products/7307454/7307454/Marcy-Foldable-Exercise-Bike-P14778368.jpg

Can be attached to clothing via clip

Image source: https://lystechnologies.co.uk/products/lys-1-0-wearable

Tracks:

- Photopic illuminance
- Color temperature
- RGB, IR
- Activity level

- You can get a "light stimulus" value through an app
- Additional paid software is needed to get the data as Excel file (via email link) → rather expensive

4	Α	В	С	D	Е	F	G	Н	1
1	timestamp	sensor	lux	kelvin	rgbR	rgbG	rgbB	rgbIR	movement
2	28-02-2020 10.14.35	Lys11	895	6329	574	805	744	36	0
3	28-02-2020 10.14.51	Lys11	895	6287	579	805	744	36	0
4	28-02-2020 10.15.07	Lys11	891	6303	574	800	740	36	0
5	28-02-2020 10.15.23	Lys11	891	6303	574	800	740	36	0
6	28-02-2020 10.15.39	Lys11	902	6279	583	810	748	37	0
7	28-02-2020 10.15.55	Lys11	908	6270	588	815	753	37	0
8	28-02-2020 10.16.11	Lys11	907	6312	583	815	753	37	0
9	28-02-2020 10.16.27	Lys11	913	6296	588	820	757	37	0
10	28-02-2020 10.16.42	Lys11	756	6492	484	689	648	30	0
11	28-02-2020 10.16.58	Lys11	929	6305	597	835	770	38	0
12	28-02-2020 10.17.14	Lys11	902	6313	579	810	748	37	0
13	28-02-2020 10.17.30	Lys11	907	6312	583	815	753	37	0
14	28-02-2020 10.17.46	Lys11	902	6279	583	810	748	37	0
15	28-02-2020 10.18.02	Lys11	899	6312	583	810	753	37	0

Illuminance measurements

Measured under daylight on a sunny day indoors

- Need for device specific calibration factor
- Directional sensitivity (rotated device gives different result)
- Error appears to be smaller for lower light levels

Black line: reference calibrated sensor (LI-COR 210SA)

	Average absolute error (lux)	Average relative error (%)
Below 500 lux	-56	-18%
500-1000 lux	-300	-49%
Above 1000 lux	-399	-32%

Image source: https://www.azosensors.com/images/equipments/EquipmentImage_824.jpg

Color temperature measurements

Measured under daylight on a sunny day indoors

(one measurement with blinds closed under electric light)

average error 9%

Blue line: reference spectrophotometer (Konica Minolta CL-500A)

Green line: LYS Button

Image source:

https://www.konicaminolta.com.cn/instruments/products/light/cl500a/img/CL-500A.jpg

Activity analysis

- Counts how many times within an interval the acceleration exceeds a limit
- Result is expressed in g
- Small investigation is needed to figure out what the results mean

Movement data grouped by activity types measured by LYS button

Image Source:

F. Dobos, "Development of a light measurement method: assessing lighting and human light exposure using a Raspberry-Pi camera and dosimeters in a short-term care facility", Master's Thesis, Aarhus University, 2019

Movisens LightMove 4

Worn on the wrist

Image source: https://www.movisens.com/en/products/light-and-activity-sensor/

Tracks:

- Photopic illuminance
- Color temperature
- Activity level
- Sleep/wake patterns
- Temperature

Movisens LightMove 4

Illuminance measurements

Unfortunately, we do not have a comparison with a calibrated sensor

LYS vs Movisens: they don't always tell the same story

- On the shirt vs on the wrist
- Sensor inaccuracies

Movisens LightMove 4

Activity and sleep analysis

- Measures acceleration in 3 axes and provides average
- Small investigation is needed to figure out what the results mean (although some indications for possible activities are provided by the sensor)

Remember:

Data can still be misleading due to wearing the instrument at the wrist

Image Source:

F. Dobos, "Development of a light measurement method: assessing lighting and human light exposure using a Raspberry-Pi camera and dosimeters in a short-term care facility", Master's Thesis, Aarhus University, 2019

Problems

Not always reliable light measurements

Markvart et al. (2015) have found differences between devices of the same type (Actiwatch) of up to $60\% \rightarrow$ matches well with our experience

 Wrist worn sensors: measurements do not match those a person receives at the eye

Aarts et al. (2017) have found differences between devices worn by the same person at different body locations (up to 27% when worn on the wrist compared to at the eyes)

 Some sensor manufacturers claim scientific validation of their products, but often just stop communicating when asked for details

References:

- 1. J. Markvart, Å. M. Hansen, and J. Christoffersen, "Comparison and correction of the light sensor output from 48 wearable light exposure devices by using a side-by-side field calibration method," *LEUKOS*, vol. 11, pp. 155–171, 2015, DOI: http://dx.doi. org/10.1080/15502724.2015.1020948.
- 2. M. P. J. Aarts, J. van Duijnhoven, M. B. C. Aries, and A. L. P. Rosemann, "Performance of personally worn dosimeters to study non-image forming effects of light: Assessment methods," *Build. Environ.*, vol. 117, pp. 60–72, 2017, DOI: 10.1016/j.buildenv.2017.03.002.

Recommendations

- Use more than one type of measuring device and compare results
- Calibration factors

Needed for each individual device, but not supplied by manufacturers of these low-cost devices

Researchers prepared to work with manufacturers on this → cost factor

- Sensor closer to the eye and facing the same way is preferable
- Combine measurement data with observations / diary entries
- Be critical when looking at the results you get

Avoid making conclusions based on questionable data

