

{2.7182818284

Integration of different renewables in Solar Heating Plants

Jianhua Fan

Department of Civil Engineering Technical University of Denmark Brovej – bygning 118, DK-2800 Kgs. Lyngby, Denmark Email: jif@byg.dtu.dk Wechat: 99469613

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)}{i!}$

DTU Civil Engineering Department of Civil Engineering

Integration of solar into a district heating system Solution 1: direct feedin

Operation temperature of the district heating system could vary from system to system

Solution 1 example: the solar heating project in Sweden

Integration of solar into a district heating system Solution 2: short term heat storage

Typically volume < 7000 m^3

Solution 2 example: Jægerspris Combined Heat & Power (CHP), Denmark Water storage tanks - 5000 m³

Consumers: 1332 Annual heat consumption: approx. 27 GWh

> Jægerspris Kraftvarme Amba

> > Koatek A/S

3000 m³ +2*1000 m³ water tanks

ægerspris Genbrugsplads 🎙

Central heat plant (gas CHP, absorption heat pump etc)

Collector field: 13,400 m²

Integration of solar into a district heating system Solution 3: long term heat storage

Solar fraction up to 50%

Solution 3 Examples: Solar district heating systems in China

3.1 Project Progress

✓ Solar field: √ 1620 collectors √ Pipeline & valves √ Signal lines

✓ Storage:

✓ Main body
✓ Protection
slope and
fence (To be
completed)

- ✓ HX station and technical room
 - \sqrt{HX} station
 - \checkmark Charge/discharge unit
- √ Water treatment Control system (To be completed)
 - √ Equipment house
 - √ High&low voltage supply
 - √ Electrical boiler
 - \checkmark Diesel generator

DH-grid & heating terminals

√ 82,600 m² covering 26 residential communities

Heat only, no electricity production

Integration of solar into a district heating system Solution 4: solar+CHP

CHP: Combined heat and power production Fuel: gas, diesel, woodchip or other biomass

The benefit of a smart heat storage

Combined renewable technologies and smart heat storage interacting with the electricity grid ...

A typical example: Marstal solar heating plant

Well integration and interplay of different renewable technologies are essential for success of a solar heating plant. One example is the Marstal Solar heating plant.

A schematic drawing of the Marstal solar heating plant

Marstal Solar heating plant Seasonal heat storage - 75000 m³ PTES

Consumers: 1600

Annual heat consumption: approx. 30 GWh

Central heat plant (biomass boiler, ORC, heat pump etc.)

Collector field 1: 9043 m

Collector field

75000 m³ water pit heat storage

Collector field 3: 15000 m²

CO₂ heat pump

Technical Specifications: Heat output: 1500 kW No. of compressors: 16 Heat absorbed: 1000 kW Temperature district heating forward: 75° Temperature district heating return: 35° C С Cooling of brine: 10 K COP heat: 3,4

Monthly heat balance in Marstal SDH 2015

13

DTU Monthly solar heat production in Marstal SDH 2015

14

Energiteknologisk udvikling og demonstratio

Heat pump operation conditions in Marstal SDH

Energy flow diagram for the Marstal solar heating plant

Monitored year: 2015 Solar fraction: 41% RES fraction: 100% Solar gain: 395 kWh/m²/year

Design and optimization of a solar heating plant by Trnsys

Thanks for your attention!