Hukseflux Thermal Sensors

How to measure albedo

- PV system performance monitoring
- the performance model
- standards and instruments
- recommendations

Introduction

- Hukseflux Thermal Sensors (NLD)
 - leading manufacturer of pyranometers and albedometers
- GroundWork Renewables (USA)
 - leader in providing meteorological and soiling data to the PV industry
 - experienced in deploying albedo monitoring systems
- Measurement to the next level

Definitions


- Measurements
 - Global Horizonal Irradiance (GHI)
 - Plane of Array irradiance (POA)
 - Reflected Horizontal Irradiance (RHI)
 - Reflected in Plane of Array (RPOA)
 - Albedo = RHI/GHI
- Resource Assessment: pre-construction
- Performance Monitoring: operational

GroundWork Pre-construction

Operational PV monitoring

GroundWork

the PV industry is learning

- how to perform albedo measurements
- how to use albedo data as input to the performance model
- how to perform uncertainty evaluation

- spatial variability (location, array shading)
- seasonal variability (vegetation, snow)
- difficult to find one representative location for RHI or RPOA

Operational: classic POA+GHI

IEC group of standards

EC	IEC 61724-1
INTERNATIONAL STANDARD	Edition 1.0 2017-03
Photovoltaic system performance – Part 1: Monitoring	
INTERNATIONAL ELECTROTECHNICAL	
ELECTROTECHNICAL COMMISSION ICS 27.160	ISBN 978-2-8322-3988-9

• 61724-1, 2, 3

- -1 monitoring
- -2 system capacity evaluation (2 sunny days)
- -3 system energy evaluation (1 year, all condictions)

IEC definition

performance model a

mathematical description of the electrical output of the PV system as a function of meteorological conditions, the system components, and the system design. This model is agreed upon in advance by the stakeholders of the test.

- localization of faults in a PV system
- identification of performance trends
- comparison of performance to design expectations and guarantees

• last 2 use the performance model

 end result of test: performance ratio or index with an uncertainty

- Step 1: what does the performance model requires as input
- Step 2 : what do you need for specific purposes (reducing uncertainty)

IEC 61741-1: classes

IEC 61724-1:2017 © IEC 2017 - 23 -

indicator such as a flag; returning to the sensor, sight along a square edge of the sensor mounting plate while adjusting the mounting plate azimuthal angle until the sight line intersects the marker previously placed with the aid of the GPS receiver; tighten the mounting plate's azimuth adjustment when done.

7.2.1.7 Sensor maintenance

Irradiance sensor maintenance requirements are listed in Table 7.

Table 7 – Irradiance sensor maintenance requirements

Item	Class A	Class B	Class C
	High accuracy	Medium accuracy	Basic accuracy
Recalibration	Once per year	Once every 2 years	As per manufacturer's requirements
Cleaning	At least once per week	Optional	
Heating to prevent accumulation of condensation and/or frozen precipitation	Required in locations where condensation and/or frozen precipitation would affect measurements on more than 7 days per year	Required in locations where condensation and/or frozen precipitation would affect measurements on more than 14 days per year	
Ventilation (for thermopile pyranometers)	Required	Optional	
Desiccant Inspection and replacement (for thermopile pyranometers)	As per manufacturer's requirements	As per manufacturer's requirements	As per manufacturer's requirements

Recalibration of sensors and signal-conditioning electronics should be performed on site when possible to minimize the time that sensors are offline. If sensors are to be sent off-site for laboratory recalibration, the site should be designed with redundant sensors or else backup sensors should be used to replace those taken offline, in order to prevent interruption of monitoring.

Cleaning of irradiance sensors without cleaning the modules can result in a lowering of the measured PV system performance ratio (defined in 10.3.1). In some cases contract requirements may specify that irradiance sensors are to be maintained in the same state of cleanliness as the modules.

Night-time data should be checked to ensure accurate zero-point calibration.

NOTE It is common for pyranometers to show a small negative signal, -1 W-m⁻² to -3 W-m⁻², at night time.

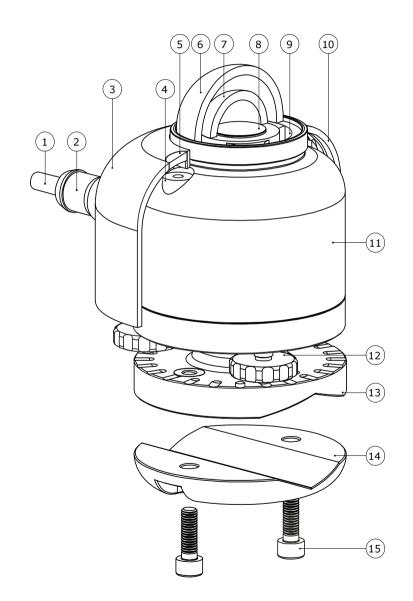
- 7.2.1.8 Additional measurements
- 7.2.1.8.1 Direct normal irradiance

Direct normal irradiance (DNI) is measured with a pyrheliometer on a two-axis tracking stage which automatically tracks the sun.

IEC 61724-1

- defines 3 monitoring system classes: A, B and C
- utility-scale: Class A
- specifies requirements for:
 - instrument type
 - cleaning intervals
 - calibration intervals

Typical Class A system


IEC 61724-1 Class A Systems

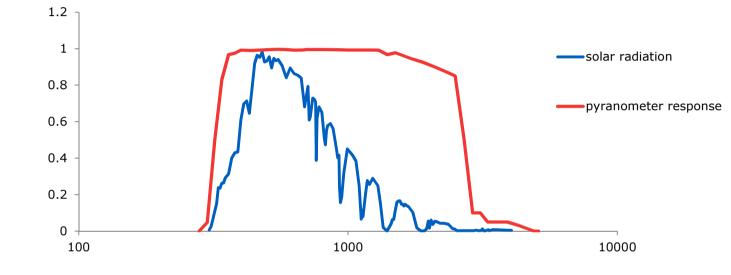
- Ventilated and heated, secondarystandard pyranometers:
 - Plane of Array (POA)
 - Global Horizontal Irradiance (GHI)
- Wind, panel temperature, air temperature, electrical parameters
- Calibration interval of 2 years
- Cleaning interval of 1 week

 you expect albedo on Class A systems, not class B or C

Hukseflux

Thermal Sensors

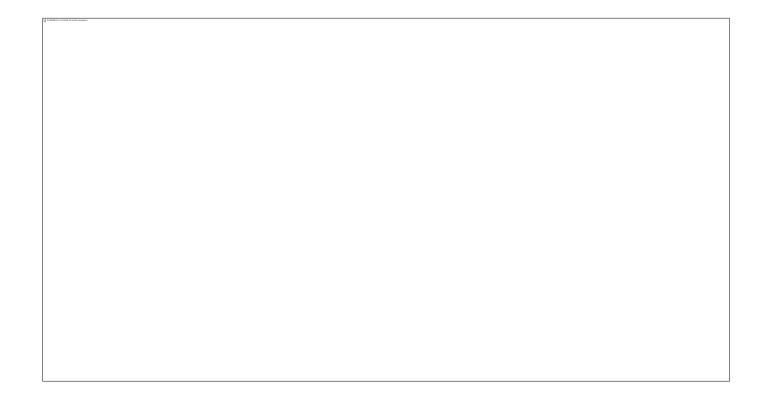
- glass domes
- thermal sensor
- calibration + test reports
- includes: heating and tilt sensor



- de-facto standard in PV monitoring
- measures solar irradiance in W/m²
- maximum yield, independent of panel type
- characterised (perfect) directional-
 - , temperature response

relative spectral content / esponse [arbitrary units]

spectrally flat


wavelength [x 10⁻⁹ m]

spectral response (red line)

- suitable for GHI, POA, RHI, RPOA
- reference for all PV cell types

Alternative: PV reference cell

- measures solar irradiance as used for power generation by PV panel
- must "match" PV panel of the power plant; cell type & AR coating
- not suitable for GHI (flat shape + directional response)

- IEC 61724-1:2017 allows both
- IEA PV Power Systems Programme "Good Practices for Monitoring and Performance Analysis" recommends use of pyranometers only (Report IEA-PVPS T13-03: 2014)

ISO 9060: pyranometer classes

ISO/TC 180/SC 1 Secretariat: SA Voting begins on: voting begins on: voting begins on:	Secretariat: SA Solar energy — Specification and classification of instruments for	Secretariat: SA Solar energy — Specification and classification of instruments for measuring hemispherical solar and direct solar radiation Voting terminates on: 2018-10-02 Énergie solaire — Spécification et classification des instruments de	Secretariat: SA Solar energy — Specification and classification of instruments for measuring hemispherical solar and direct solar radiation Voting terminates on: 2018-10-02 Énergie solaire — Spécification et classification des instruments de	FINAL DRAFT	INTERNATIONAL STANDARD	ISO/FDIS 9060
Voting terminates on: 2018-10-02 direct solar radiation				Secretariat: SA Voting begins on: 2018-08-07 Voting terminates on:	classification of instrum measuring hemispheric direct solar radiation	ents for al solar and
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATEMENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING	RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING	SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING	ALCONDA IN LINE.	SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING		
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION DF ANY RELEVANT PATENT RICHTS OF WHICH	UBMIT WITH THEIR COMMENTS, NOTFICATION OF ANY RELEVANT PRENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING OCCURENTATION. IN ADDITION TO THEIR EVALUATION AS DEPARTMENT OF THEIR EVALUATION AS	UBMIT WITH THEIR COMMENTS, NOTFICATION OF ANY RELEVANT PRENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING OCCURENTATION. IN ADDITION TO THEIR EVALUATION AS DEPARTMENT OF THEIR EVALUATION AS	IN ADDITION TO THEIR EVALUATION AS	SUBMIC WITH THEIR COMMENTS. NOTFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. IN ADDITION TO THEIR EVALUATION AS	an ar contraction of the second s	

Pyranometer classes

class A: Heated & Ventilated
 SR30

• class B: SR15

class C: SR05

ISO to IEC connection

IEC monitoring class	A	В	C
ISO 9060:1990 pyranometer class	secondary standard	first class	second class
ISO 9060:2018 pyranometer class	spectrally flat class A	spectrally flat class B	spectrally flat class C or none
heating	yes	yes	no
ventilation	yes	yes	no
calibration	1 yr / 2 yr following manufacturer recommendation	2 yr or manufacturer recommendation	
cleaning	1 wk	2 wk	

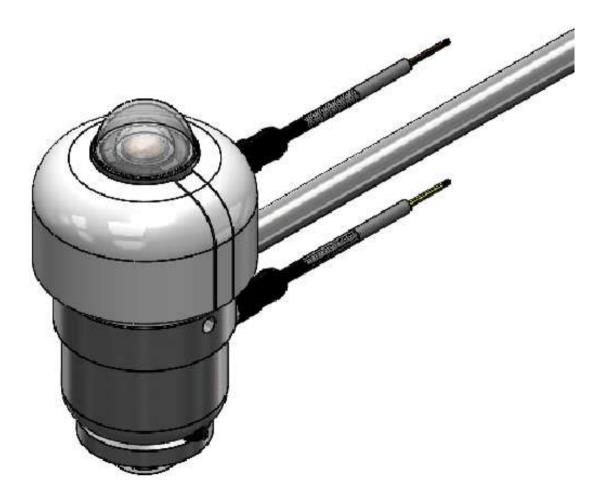


Hukseflux Thermal Sensors

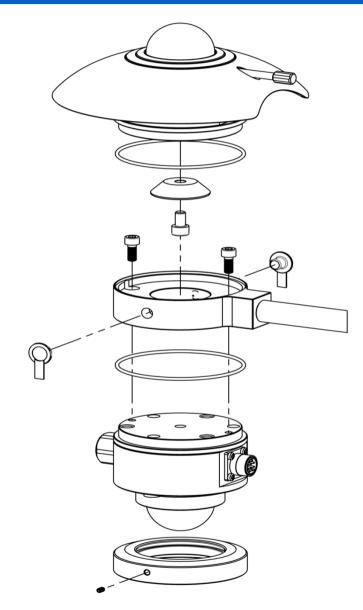
IEC: starts with POA

Traditional albedo

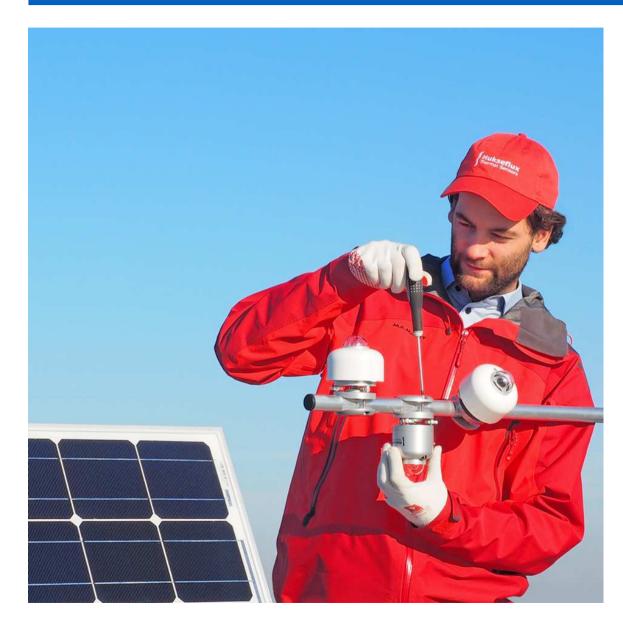
- with one-sided PV panels: outside of scope performance model
- albedo usually not measured


• with bifacial PV this changes:

- apply IEC 61724-3, clause 5
- for each POA:
 - measurement of the local albedo to demonstrate consistency with what is assumed in the model
 - include in *documentation of uncertainty*



Albedometer



Albedometer modular

Albedometer + POA

Calibration services

GroundWork Resource assessment

GroundWork Resource assessment

- 1.5 2 m height (WMO)
- unobstructed site
- defined land management strategy (vegetated or bare)

GroundWork Operational: GHI + POA

Operational: POA on tracker

GroundWork

Operational: 2 x pyrano

GroundWork

GroundWork Operational: unobstructed RHI

- unobstructed albedo: reference for satellite measurements
- unobstructed albedo: reference for multiple instruments located at the PV array at every POA

RPOA + POA (bifacial PV)

RPOA + POA (bifacial PV)

GroundWork

- spectrally flat class A for GHI/RHI/ POA
- PVsyst model expects spectrally flat horizontal radiation as input
- empirical calculation in performance model RPOA (PVsyst "albedo coefficient")

alternatives

- multiple (lower cost) instruments for RHI, like spectrally flat Class B
- reference cells for POA / RHI (not for GHI)

Recommendations

- look at the requirements of your performance model
- focus on reducing spatial uncertainty by taking multiple RHI measurements (1 for every POA)
- deploy at least one unobstructed albedo measurement for reference (against albedo resource assessment and deployed RHI)

Recommendations

- keep logistics and traceability simple; use the same instruments for POA, GHI and RHI measurements (usually spectrally flat Class A pyranometers)
- use separate pyranometers or modular albedometers consisting of 2x pyranometer (this is easier for recalibration than 1 instrument)

your contacts

https://www.hukseflux.com Kees VAN DEN BOS Hukseflux kees@hukseflux.com

https://www.grndwork.com Justin ROBINSON GroundWork jrobinson@grndwork.com

Hukseflux Thermal Sensors

Thank You!