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FIRM SOLAR FORECASTS

FORECAST
——PV OUTPUT Even the best forecasts are not perfect
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FIRM SOLAR FORECASTS

‘ - * \ + SOLAR OVERSUPPLY & CURTAILMENT

GUARANTEED PRODUCTION
——PV OUTPUT Even the best forecasts are not perfect

But predicted output could be guaranteed
With backup storage and PV curtailment

Thus delivering firm forecasts to grid
operators
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FIRM SOLAR FORECASTS

Presentation Plan

An effective model validation metric

GUARANTEED PRODUCTION

\

— PV OUTPUT
A low-cost deployable strategy for
zero-uncertainty grid operations

An effective entry to firm PV power
generation

NYISO Case study
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Validation Metric Standard metrics:  MBE, RMSE, MAE
%MBE, %RMSE, %OMAE

Forecast Skill

Perfect forecast metric: cost of storage + overbuild

@ current technology cost:

—PV OUTPUT @ future technology cost:

\

S400/kW PV S50/kWh Storage
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Validation Metric
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Xl wlaticost\etategy for Zero-Uncertainty PV Fleet Operations
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An Effective Entry Step to Least-Cost Firm PV Power Generation

‘ - + \
+ SOLAR OVERSUPPLY & CURTAILMENT =— > FIRM/E0SAAIASIBLE PV 24/7/365




An Effective Entry Step to Least-Cost Firm PV Power Generation

E| IMPLICIT
+ SOLAR OVERSUPPLY & CURTAILMENT =— > FIRM/DISPATCHBLE PV 24/7/365

Firm PV va;_ 2040

16 -

Storage/PV Synergy

Affordable Sweet Spot MISO: 55% PV 40% wind 5% n.gas
4.6 cents / kWh

Storage Cost
contribution to
premium

[y
N

Firm LCOE premium
0

IS

‘Below Grid Parity’
Curtailment with PV Oversizing



An Effective Entry Step to Least-Cost Firm PV Power Generation

‘ -+ \
+ SOLAR OVERSUPPLY & CURTAILMENT (implicit storage)

Perfect forecast logistics

forecast —_

)l,f
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An Effective Entry Step to Least-Cost Firm PV Power Generation

‘ -+ \
+ SOLAR OVERSUPPLY & CURTAILMENT (implicit storage)

Firm Power (i.e., 100%-ready) logistics

actual

load shape
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An Effective Entry Step to Least-Cost Firm PV Power Generation

NYISO CASE STUD Yuwsorene * 11 Regions Grid Energy Penetration
* Single PV Plants Near 0% (current)
32 GW

* Homogeneously dispersed fleets 10%
* Entire NYISO 25%
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* Flexibility 0%, 2.5% & 5%
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NYISO CASE STUD Yursozenes * 11 Regions Grid Energy Penetration

* Single PV Plants * Near 0% (current) = Firm Forecasts
* Homogeneously dispersed fleets * 10%
* Entire NYISO * 25%
* 50%
* Flexibility 0%, 2.5% & 5% * 100% -2 Firm Power Gen Required
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NYISO CASE STUD Yarsozsnes * 11 Regions Grid Energy Penetration
* Single PV Plants * Near 0% (current) = Firm Forecasts
* Homogeneously dispersed fleets * 10%
* Entire NYISO * 25%
* 50%
* Flexibility 0%, 2.5% & 5% * 100% -2 Firm Power Gen Required
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NYISO CASE STUD Yursozenes * 11 Regions Grid Energy Penetration

* Single PV Plants * Near 0% (current) = Firm Forecasts
* Homogeneously dispersed fleets * 10%
* Entire NYISO * 25%
* 50%
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Influence of regional interconnection

NYISO CASE STUD Yuwsozss: LCOE PREMIUM
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Influence of regional interconnection

Influence of the solar resource

FIRM POWER GEN
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Influence of regional interconnection Influence of the solar resource

NYISO CASE STUD Yoz LCOE PREMIUM
single plant vs. distributed fleet
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CONCLUSIONS

* Firm forecasts constitute an effective evaluation metric, more reflective of
operational costs than standard metrics

* Firm forecast strategies can be economically justifiable today

* Firm forecasts strategies -- applying storage both real and implicit -- constitute a
very effective entry step to achieve least cost ultra-high PV penetration when firm
power generation will be a prerequisite

* The NYISO case study points that a [2040] target ultra-high penetration straight
business LCOE of 4-5 cents per kWh would be achievable with the strategy

* Firm PV power generation could be contained within electrical regions at a
modest cost premium (decreasing with penetration), thus alleviating the need for
major trans-regional grid buildup and enhancing localized resiliency

THANK YOU
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Solar Forecasts Types and Horizons
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Solar Forecasts Types and Horizons

SUNY FORECAST MODEL
FLEETS (aka SolarAnywhere)
* Persistence
* Satellite Cloud Motion
* NWRPS
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