UiT The Arctic University of Norway

The nationwide pure PV-EV energy system

Prof. Tobias Boström Department of Physics and Technology ARC - Arctic Centre for Sustainable Energy

What if we could power an entire country on solely PV?

What if the PV intermittency could be regulated solely by EVs and V2G?

V2G = Vehicle to Grid

Then, we could easily achieve a 100% renewable energy system

Objectives

- 1) Reveal the potential and synergy of PV + EVs
- 2) Demonstrate the feasibility of a nationwide energy system solely reliant on solar energy and EVs

The study use a combination of measured values, simulations, and assumptions

Numerical model

- All road vehicles are EVs
 - 100 kWh batteries
 - 49 km per day
 - 224 Wh per km
- Stationary EVs are V2G connected
- Aggregated photovoltaic (PV) production

The final energy counsumption of Spain can be covered by 56 m² of PV per capita

Case study: Spain

Final energy consumption Average PV yield Required PV area 960 TWh/year 365 kWh/m² and year 2.6 billion m²

Inhabitants

47 million

Disregarding intermittency

Intermittency & self-reliance

- To what extent the supplied energy can cover the load
- Between 0 % and 100%
- In this study: hourly resolution

Self-reliance using only PV and 1h resolution

Case	PV area per capita	Self-reliance
Only PV	56 m²	37%

Self-reliance using PV + EVs and 1h resolution

Case	PV area per capita	Self-reliance
Only PV	56 m²	37%
PV + balancing with EV batteries	56 m²	93%

100% self-reliance with PV + EVs and 1h resolution

Case	PV area per capita	Self-reliance	
Only PV	56 m²	37%	
PV + balancing with EV batteries	56 m²	93%	
PV + balancing with EV batteries	73 m ²	100%	
Still 99.5% with EV battery size reduced from 100 kWh to 50 kWh			

100% self-reliance in Spain is achiveable!

- Daytime
 - PV energy used directly
 - Surplus PV energy stored in EVs
- Nightime and when cloudy
 - Energy from EV batteries, using V2G
- 3.45 billion m² of PV (73 m² per capita)
- 29 million EVs

Further work

What if we also include wind and hydro power? What percentage EVs is needed? What V2G connection power is needed? What is the social acceptance? What are the cost benefits?

Study the same premises in other countries

Smart Energy Volume 1, February 2021, 100001

The pure PV-EV energy system – A conceptual study of a nationwide energy system based solely on photovoltaics and electric vehicles

Tobias Boström ^a ^A [⊠], Bilal Babar ^a, Jonas Berg Hansen ^a, Clara Good ^b

^a UiT, The Arctic University of Norway, Department of Physics and Technology, PO 6050 Langnes, 9037, Tromsø, Norway

https://doi.org/10.1016/j.segy.2021.100001

Contact info: Prof. Tobias Boström tobias.bostrom@uit.no